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1. Introduction 

Numerical methods are indispensable tools for solving initial value problems (IVPs) in differential 

equations, especially when analytical solutions are difficult or impossible to obtain. Among these methods, the 

Modified Euler’s method and Taylor’s method stand out due to their simplicity and effectiveness. The 

Modified Euler’s method, also known as Heun’s method, is an improved version of the classical Euler’s 

method, which reduces error by considering the average of the slopes at the beginning and the end of the 

interval. This approach not only enhances accuracy but also maintains the simplicity and ease of 

implementation that makes Euler's methods appealing for a wide range of applications [1]. On the other hand, 

Taylor’s method leverages the Taylor series expansion to approximate solutions by incorporating higher-order 

derivatives of the function, thereby increasing the precision of the solution [2]. This method is particularly 

powerful when the derivatives of the function are known and can be computed efficiently [3]-[11]. Both 

methods offer unique advantages: the Modified Euler’s method strikes a balance between computational 

efficiency and accuracy, while Taylor’s method provides high precision by utilizing additional information 

about the function's behavior. By exploring these methods, we can gain deeper insights into the trade-offs 

between complexity, computational cost, and accuracy in numerical analysis. This study aims to compare and 

contrast these two approaches in the context of solving IVPs, highlighting their theoretical underpinnings, 

practical implementations, and performance in various scenarios [4]-[19]. Through detailed analysis and 

illustrative examples, we seek to demonstrate how these methods can be effectively applied to solve differential 

equations, providing valuable tools for researchers and practitioners in fields ranging from engineering to the 

physical sciences. 

 

2. Preliminaries 

 

Definitions and fundamental concepts that are used throughout this study are presented in this part. 

The Riemann-Liouville (RL) and Caputo derivatives for fractional functions with interval values under the 

generalized Hukuhara difference.  Initially, let us remember that if 𝑥 𝜖 𝐿1[𝑝, 𝑞] (bounded interval [𝑝, 𝑞]), then 

the RL fractional integral 𝐼𝑝+
𝛼 𝑥 of hierarchy 𝛼 >  0 is determined by 

(𝐼𝑎+
𝛼 𝑥)(𝑡) =  

1

Γ(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑡

𝑎
𝑥(𝑠)𝑑𝑠, for 𝑡 ≥ 𝑎. 
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The RL derivative of hierarchy 𝛼 ∈ (0,1] for a real function 𝑥𝜖𝐿1[𝑝, 𝑞] is characterized by(𝐷𝑝+
𝛼 𝑥)(𝑡) =

𝑑

𝑑𝑡
𝐼𝑝+

1−𝛼𝑥(𝑡), that is, 

 (𝐷𝑝+
𝛼 𝑥)(𝑡) =

1

Γ(1−𝛼)

𝑑

𝑑𝑡
∫ (𝑡 − 𝑠)−𝛼𝑡

𝑝
𝑥(𝑠)𝑑𝑠.                  (1) 

If 𝑥 𝜖 𝐿1[𝑝, 𝑞] is a real function such that 𝐷𝑝+
𝛼 𝑥 exists on[𝑝, 𝑞], then the Caputo fractional derivative 

(CFD)  𝐶𝐷𝑝+
𝛼 𝑥of hierarchy 𝛼 𝜖 (0,1)is determined by  

 ( 𝐶𝐷𝑝+
𝛼 𝑥)(𝑡) ≔ (𝐷𝑝+

𝛼 [𝑥(∙) −  𝑥(𝑝)])(𝑡).                     (2) 

If 𝑥 ∈ 𝐴𝐶[𝑝, 𝑞], Next, we have that 

( 𝐶𝐷𝑝+
𝛼 𝑥)(𝑡) = (𝐼𝑝+

1−𝛼 𝑑

𝑑𝑡
𝑥) (𝑡) =  

1

Γ(1−𝛼)
∫ (𝑡 − 𝑠)−𝛼𝑡

𝑝

𝑑

𝑑𝑠
𝑥(𝑠)𝑑𝑠,                                         (3) 

And 

(𝐷𝑝+
𝛼 𝑥)(𝑡) = ( 𝐶𝐷𝑝+

𝛼 𝑥)(𝑡) +
(𝑡−𝑝)−𝛼

Γ(1−𝛼)
𝑥(𝑝).              (4) 

     Additionally, we have  

(𝐼𝑝+
𝛼 𝐷𝑝+

𝛼 𝑥)(𝑡) = 𝑥(𝑡) − 𝑥(𝑝),   𝑡 ∈ [𝑝, 𝑞]                  (5) 

 Many definitions and studies of fractional derivatives have been proposed in the literature. Probably this 

is due to the fact that no harmonious definition preserves all properties of the classical integer-order derivative 

[5]. These definitions include the Grunwald–Letnikov, Riemann–Liouville, Weyl, Riesz and Caputo versions. 

However, in the Caputo case, the derivative of a constant function is zero and one can properly define the 

initial conditions for the fractional differential equations which can be handled by using an analogy with the 

classical integer-order case. For these reasons, we adopt the Caputo fractional derivative definition in this work 

[6]. 

Definition 1: A real function 0),( ttu is in the space 1

RC  if there exists a real number a > λ such that 

)()( tvttu a where 0,0[)( Ctv , and it is in the space NnCifuC nn  ,1)(

 . 

Definition 2: The Riemann–Liouville fractional integral operator of order α > 0 associates with a real function 

11)(  Ctu is defined 


 duttuJ

t

t )()(
)(

1
)]([

0

1





 , and 0

tJ is an identity operator. 

Definition 3: The Caputo time-fractional derivative of order NnCtuof n   ,)(0 1 is defined as 

nniftuJtuD nn

tt    1)]([)]([ )( and niftutuD n

t   )()]([ )( . Similarly, for n being the smallest 

integer that exceeds α, the Caputo time-fractional derivative operator of order α is given as 

nif
t

txu
txuDandnifn

t

txu
JtxuD

n

n

tn

n
n

tt 
















    ),(

)],([1
),(

)],([ . 

Remark 1 A direct implementation of the Caputo derivative yields 








 pp

t t
p

p
tD

)1(

)1(
][ for 0p and 

0][ cDt

 where c is a constant. Also, it is easy to see that the Caputo derivative is a left inverse of the 
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Riemann–Liouville integral but not a right inverse. Specifically, for Nnnn  ,1  and nCtu 1)(   we 

have  
kt

k

n

k

k

tt ututuDJ !

1

0
)0()()( 


, where t > 0.  

It should be noted here that it suffices to consider the Caputo fractional derivative of order 0 < α ≤ 1 since 

)]([ )1()1( tuD nn

t

 for arbitrary order n –1< α ≤ n, where α – (n – 1) ∈ (0, 1]. 

Definition 4: A fractional power series (FPS) expansion is an infinite series about t = t0 of the form 

k

k k ttc )( 00





where 0,10 ttnn   . 

Theorem 5: Suppose that u(t) has a FPS expansion about t0 as above for Rttt  00 . If the )]([ tuDk

t

 are 

continuous on ),( 00 Rtt  for k ∈ N∗, then 
*Nk  where k

tD  is the k-fold Caputo derivative and R is the radius 

of convergence. 

Definition: A power series of the form 

k

k

k txf )(
0




     (6)

 

where 10,...)( 1  m

m RIIIx  and t ≥ 0 is called a multi-fractional power series about t = 0. 

Theorem 6. Suppose that ),( txu has a multi-fractional power series representation about t = 0 as above for 

Ix and 0 ≤ t ≤ R. If )],([ txuDk

t


are continuous on ),0( RI  for each k ∈ N∗, then 

)1(

)]0,([
)(








k

xuD
xf

k

k where 

R is the radius of convergence. 

 

3. Analytic solution of homogeneous time-invariant fractional IVP 

 

 As our approach depends mainly on constructing an analytical solution of the time fractional differential 

equation under consideration, we first present, in a similar fashion to the classical power series, some essential 

convergence theorems pertaining to our proposed solution. 

Theorem 7 Let   
0kk xf be a sequence of functions ifRIfk .:  is convergent for some t = t0 > 0, then it is 

convergent for all ),0( 0tt . 

 Proof Assume that convergent for t = t0 > 0. Then, for fixed 00 , there exists N ∈ N such that 

00)( k

k txf  . It follows that if k ≥ N, we have 

k

k

k
t

t
txf















0

00)(  for all Ix and ),0( 0tt , which shows 

that   k

k k txf


0
is absolutely convergent (and so convergent). 

We remark here that if )(0 xf is a bounded function on I, then the convergence at some t = t0 > 0 implies the 

convergence on [0,t0).  

Corollary 7: Let   
0kk xf be a sequence of functions RIfk : is divergent for some t = t0 > 0, then it is 

divergent for all t > t0.  
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Proof Suppose not. That is convergent for some t > t0. it converges on (0,t) and thus converges at t0, which is 

a contradiction 

Corollary 8: Let   
0kk xf be a sequence of functions RIfk : . Then one of the following cases is true:  

p1: The series converges only at t = 0;  

p2: the series converges for all t ≥ 0;  

p3: there exists R > 0 (called the radius of convergence) such that converges for all t ∈ (0,R) and diverges for 

all t > R. 

Proof: Suppose it is the case that both p1 and p2 are not valid. Then there exist α,β ∈ R+ such that (2) converges 

at t = α and diverges at t = β. Therefore, the set  convergestxftT k

k k


)(:0

0 
  is nonempty and T ⊆ (0,α) 

by. Thus R := supT exists. Now, if t > R, then divergent and if 0 < t < R, then, by the definition of the supremum 

there exists t < t0 ∈ T such that convergent at t0 and so by convergent on (0,t0). The other cases can be handled 

easily. 

Now, consider the following general homogeneous time-invariant fractional initial value problem: 

      RttxuFtxuDt  0,,,

   (7)
 

 xfxu )0,(       (8) 

where Dα t is the Caputo fractional operator with α ∈ (0, 1], u( x ,t) is an unknown function, F is an analytic 

differential operator in the variables  mxxx ,....,1 that involves both linear and nonlinear terms, R ∈ R, and f 

(x) ∈ C∞(Rm). In our next theorem, we exhibit a parallel scheme of the Taylor series method to solve problem. 

The method gives an analytical solution in the form of convergent multi-fractional power series without the 

need for linearization, perturbation, or discretization of the variables [7]. Instead of equating terms with the 

same degree of homogeneity, our approach depends recursively on time fractional differentiation to obtain the 

unknown series coefficients. 

Notation We denote the coefficient extraction operator for a multi-fractional power series G( x ,t), which 

extracts a constant multiple of the coefficient of  GtbyGint nn  , . 

More precisely, for n ≥ 1 

         xgntxgktt n

k

k

n

G

n 1
0

 






    (9)

 

Note that, for a multi-fractional power series representation,     k

k

k txgtxG 





0

, , we have 

         '

0 1, GtxgntxGD n

nt

n

t

       (10)
 

Here 
tt

n

t DDD ..... (n times). 

 

4. Taylor’s method 

 Taylor's method is a powerful and widely used technique for solving ordinary differential equations 

(ODEs) by approximating the solution through the Taylor series expansion. At its core, this method utilizes 

the fact that any sufficiently smooth function can be expressed as an infinite sum of its derivatives at a single 
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point, multiplied by the corresponding powers of the distance from that point. In practical applications, only a 

finite number of terms are used, transforming the infinite series into a polynomial approximation. The 

fundamental idea is to predict the value of the function at a future point based on its value and the values of its 

derivatives at the current point. This is particularly useful in numerical analysis where the exact analytical 

solution of an ODE is challenging or impossible to obtain.  

 The accuracy of Taylor's method is directly related to the number of terms used in the series; more 

terms typically yield a higher accuracy, but also require the computation of higher-order derivatives, which 

can be computationally intensive. The method is especially advantageous for problems where the derivatives 

can be easily calculated and where high precision is required over a short interval. In practice, Taylor's method 

is often implemented in conjunction with other numerical methods to improve stability and efficiency. For 

example, it can be combined with Runge-Kutta methods to enhance accuracy while controlling computational 

costs. Furthermore, Taylor's method finds applications in various fields, such as physics for modeling dynamic 

systems, engineering for simulating control processes, and finance for predicting the behavior of complex 

financial instruments. The flexibility and precision of Taylor's method make it a cornerstone in the numerical 

solution of differential equations, enabling researchers and practitioners to tackle complex problems that are 

otherwise intractable with analytical methods alone. 

 In practical applications, the Taylor series method typically involves truncating the series after a finite 

number of terms, which introduces an approximation error. The order of the method is determined by the 

number of terms retained in the series: a higher-order Taylor method includes more terms and generally yields 

more accurate results, albeit at the cost of increased computational complexity. Specifically, for an ODE of the 

form y′(t)=f(t,y(t))y'(t) = f(t, y(t))y′(t)=f(t,y(t)) with initial condition y(t0)=y0 . 

 One of the significant advantages of Taylor's method is its potential for high accuracy, especially when 

higher-order derivatives are included. However, this also poses a challenge because calculating higher-order 

derivatives can be analytically complex and computationally intensive. Moreover, the method's efficiency and 

accuracy depend heavily on the choice of step size. Reduces truncation error but increases the number of steps 

required, whereas a larger can lead to significant approximation errors. 

 Taylor's method is particularly beneficial for problems where the solution is expected to be smooth and 

where high accuracy is paramount. However, its practical use is often limited by the difficulty of obtaining 

higher-order derivatives and the computational burden associated with evaluating these terms. In many real-

world applications, Taylor's method is complemented or replaced by other numerical techniques, such as 

Runge-Kutta methods, which offer a balance between accuracy and computational efficiency without the need 

for higher-order derivatives. 

The fractional differential equation problems have been successfully approximated with correct results 

by the Taylor series method (TSM), whose foundation is the Taylor series. All of the coefficients in the TS of 

the solution may be obtained in TSM by solving the recurrence equations that are derived from the supplied 

DE. Fractional derivative is used to generalize the traditional TSM, which is the basis for the fractional 

differential transform method (FDTM). Presented the generalized differential transform method (GDTM) 

makes use of the generalized Taylor formula. To determine the generalized TS coefficients with complicated 

nonlinear functions, this work aims to obtain efficient techniques. 

Theorem: 2 
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Consider that (𝐷𝑡
𝛼)𝑘𝑓(𝑡)𝜖𝐶(0, 𝑞] for 𝑘 = 0,1, … , 𝑛 + 1, where0 < 𝛼 ≤ 1; then one has 

𝑓(𝑡) = ∑
𝑡𝑗𝛼

Γ(𝑖𝛼+1)
𝑛
𝑖=0 ((𝐷𝑡

𝛼)𝑖𝑓)(0) +
((𝐷𝑡

𝛼)𝑛+1𝑓)(𝜂)

Γ((𝑛+1)𝛼+1)
𝑡(𝑛+1)𝛼               (11) 

For all 𝑡 ∈ (𝑜, 𝑞] with 0 ≤ 𝜂 ≤ 𝑡. 

The GDT of the kth derivative for an analytic function 𝑓(𝑡)can be summed up as follows: 

𝐹(𝑘) =
1

Γ(𝛼𝑘+1)
[(𝐷𝑡

𝛼)𝑘𝑓(𝑡)]𝑡=0,                                                    (12) 

Where 0 < 𝛼 ≤ 1, 𝑘 = 0,1,2, …, 

The generalized differential inverse transform of 𝐹(𝑘) is described as follows: 

𝑓(𝑡) =  ∑ 𝐹∞
𝑘=0 (𝑘)𝑡𝛼𝑘 .                                                                (13) 

Theorem: 3 Suppose that 𝐹(𝐾), 𝐺(𝑘), and 𝐻(𝑘)𝑓(𝑡), 𝑔(𝑡), and ℎ(𝑡), respectively. Then, the attributes listed 

below are met. 

𝐼𝑓 𝑓(𝑡) = 𝑔(𝑡) ± ℎ(𝑡), 𝑡ℎ𝑒𝑛 𝐹(𝑘) = 𝐺(𝑘) ± 𝐻(𝑘). 

i. 𝐼𝑓 𝑓(𝑡) = 𝑝𝑔(𝑡), 𝑤ℎ𝑒𝑟𝑒 𝑝 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑡ℎ𝑒𝑛 𝐹(𝐾) = 𝑝𝐺(𝑘). 

ii. 𝐼𝑓 𝑓(𝑡) = 𝑔(𝑡)ℎ(𝑡), 𝑡ℎ𝑒𝑛 𝐹(𝑘) = ∑ 𝐺(𝑙)𝐻(𝑘 − 1)𝑘
𝑙=1 . 

iii. 𝐼𝑓 𝑓(𝑡) =  𝐷𝑡
𝛼𝑔(𝑡), 𝑡ℎ𝑒𝑛 𝐹(𝑘) = (Γ(𝛼(𝑘 + 1) + 1)/Γ(𝛼𝑘 + 1)𝐺(𝑘 + 1). 

 

It is evident that the demonstration of these statements for the Caputo derivative equally obviously holds for 

the modified RL derivative. 

 

4. Numerical Approximations 

 

 Numerical approximations are essential tools in various scientific and engineering disciplines, where 

exact solutions to mathematical problems are either impossible or impractical to obtain. These approximations 

allow us to estimate solutions with a high degree of accuracy, using methods that leverage computational power 

and advanced mathematical techniques. One common approach is the use of finite difference methods, which 

approximate derivatives by considering the values of functions at discrete points. This is particularly useful in 

solving differential equations that model physical phenomena, such as heat conduction and fluid dynamics. 

Another widely used method is the Monte Carlo simulation, which relies on random sampling to approximate 

complex integrals and probabilistic systems, often employed in financial modeling and risk assessment.  

 Additionally, polynomial interpolation and spline methods offer ways to estimate functions between 

known data points, ensuring smooth transitions and minimal error. In optimization problems, techniques like 

gradient descent and Newton's method iteratively approach optimal solutions by leveraging local information 

about the function's behavior. Furthermore, numerical integration methods, such as the trapezoidal rule and 

Simpson's rule, provide ways to estimate the area under curves, crucial in fields ranging from physics to 

economics. The convergence and stability of these numerical methods are paramount, requiring careful 

analysis to ensure that approximations are both accurate and reliable over time. As computational capabilities 

continue to advance, so too do the algorithms and techniques for numerical approximations, enabling 

increasingly complex and precise modeling of real-world systems. This continuous improvement highlights 

the importance of numerical approximations in advancing technology and understanding the intricacies of 

various scientific domains. 
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 The fractional IVP under the CFD is solved numerically in several straightforward instances presented 

in this portion. Initially, a numerical instance is presented to establish the effectiveness of the previously 

recommended approaches when compared to the exact methodical solution. 

Definition: 1 Let 𝑅(𝑡) = [𝑅(𝑡), 𝑅(𝑡), 𝑅̂(𝑡) = [𝑅̂(𝑡), 𝑅̂(𝑡)]and𝑅̃(𝑡) = [𝑅̃(𝑡), 𝑅̃(𝑡)]depict the exact and 

approximate answers to equation (4.1). The definition of the discrepancies between the precise and 

approximate results is  

                          𝐸𝑀𝐹𝐸𝑀 = |𝑅(𝑡) − 𝑅̂(𝑡)|, 𝐸𝑀𝐹𝐸𝑀 = |𝑅(𝑡) − 𝑅̂(𝑡)|   (14) 

for the MFEM and 

𝐸𝑇𝑀 = |𝑅(𝑡) − 𝑅̃(𝑡)|, 𝐸𝑇𝑀 = |𝑅(𝑡) − 𝑅̃(𝑡)|    (15) 

for the modified Taylor’s method.  

Example: 2  Examine this fractional IVP. 

              (𝐶𝒟0+
𝛼 𝑅)(𝑡) = 𝜆𝑅(𝑡), 𝑅(0) = 𝑅0 ∈ 𝐾𝐶(𝕊), 𝑡 ∈ [0,1],        (16)  

Where 𝜆 𝜖 [−1,1]{0}. 

 

Scenario 1:  

Consider 𝜆 ∈ (0,1] and 𝑅 be 𝔴−rising then the methodical resolution of calculation is provided by 𝑅(𝑡) =

[𝑅(𝑡), 𝑅(𝑡)] = 𝑅0𝐸𝛼[𝜆𝑡𝛼]. Table 1 lists the discrepancies between the estimate and analytical results. 

 

Scenario 2: 

Consider 𝜆 ∈ [−1,0) and 𝑅 be 𝔴−falling then the methodical resolution of calculation is provided by 𝑅(𝑡) =

[𝑅(𝑡), 𝑅(𝑡)] = 𝑅0Eα[λtα]. Table 2 lists the discrepancies between the analytical and estimate outcomes. 

 

                                                  Table 1: Errors in Scenario 1 

Step size𝒉 𝑬𝑴𝑭𝑬𝑴 𝑬𝑴𝑭𝑬𝑴 𝑬𝑻𝑴 𝑬𝑻𝑴 

1/10 0.2712 0.5824 0.1351 0.1446 

1/20 0.1366 0.2631 0.063 0.0723 

1/40 0.0653 0.1427 0.0331 0.0361 

1/80 0.324 0.0648 0.0162 0.0181 

1/160 0.0159 0.0319 8.1E-03 8.03E-03 

1/320 0.0069 0.0142 4.03E-03 4.35E-03 

1/640 0.0035 0.0070 2.08E-03 2.18E-03 

 

Table 2: Errors in Scenario 2 

 

Step size 𝒉  𝑬𝑴𝑭𝑬𝑴  𝑬𝑴𝑭𝑬𝑴  𝑬𝑻𝑴  𝑬𝑻𝑴 

1/10 3.65E-02 6.50E-02 1.39E-02 2.25E-02 

1/20 1.62E-02 3.28E-02 1.15E-02 1.39E-02 

1/40 6.24E-03 1.41E-02 0.39E-02 0.59E-02 
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1/80 3.38E-03 5.80E-03 0.25E-02 0.38E-02 

1/160 1.88E-03 3.86E-03 0.19E-02 0.35E-02 

1/320 7.34E-04 1.58E-03 0.49E-03 0.21E-02 

1/640 4.24E-04 7.35E-04 0.37E-03 0.52E-03 

 

The table you provided shows the errors associated with different step sizes in numerical methods for 

solving ordinary differential equations (ODEs). The step size h is varied, and the errors for two methods, 

denoted as MFEM (likely a modified finite element method) and TM (Taylor method), are recorded 

Step Size h 

The step size h is the interval between points at which the numerical solution is evaluated. A smaller step size 

typically leads to a more accurate approximation but requires more computational effort. 
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